

In-Situ Thermal Remediation: Steam Enhanced Extraction (SSE) at Site 4 Former Underground Storage Tanks, Bethpage NY

Presented By
Joe McCloud
Naval Facilities Engineering Command (NAVFAC)
Mid Atlantic

Objective

- Thermal treatment technology overview
 - Fundamental principles
 - o Technologies
- Site 4 Characterization
- Treatability Study
- Remedial Objectives
- System design
- Cost considerations
- Summary

NAME OF STREET

Thermal Treatment Technology Overview

- Application of heat to the subsurface to enhance the removal of organic contaminants
- Aggressive remedial technology
- Typically applied for source area removal
- Often used in combination with other technologies
 - Groundwater/Non Aqueous Phase Liquid (NAPL) Extraction
 - Soil Vapor Extraction
 - Bioremediation

Thermal Treatment Technology Overview

- Increasing temperature:
 - Soil water sorption coefficient
 - Aqueous solubility

Thermal Treatment Technology Overview

- Electrical Resistance Heating (ERH)
- Radio Frequency Heating
- Injection of Hot Air, Water or Steam
- Thermal conductive heating (TCH)

- Underground storage tanks (UST)
- No.6 Fuel Oil (1941 66); No.4 Fuel Oil (1966 early 80s)

Geology:

- o glacial deposits consisting of coarse sands and gravels
- o finer-grained sediments more common at depths below 50' bgs
- o porosity: 24.4%

Hydrogeology:

- o groundwater flow south and southwest. Depth to GW ~50 ft
- average horizontal hydraulic conductivity 55 feet/day

Site COCs

- Soil: PAHs associated with petroleum
 - Exceed NYSDEC Soil Cleanup Objectives (unrestricted use and protection of groundwater)
 - NYSDEC requires removal of TPH that forms free product
- Groundwater: VOCs, SVOCs

 Petroleum contaminated soil and semi – solid petroleum products are present near and below the groundwater table

Areal extent: 0.14 acres

• Max TPH: 50,000 ppm

< ¼ inch NAPL observed
 in MW01 and MW02

Cross section A – A'

- Understand NAPL characteristics over a range of temperatures
- Determine effectiveness of hot water flushing and steam enhanced extraction to remove NAPL and reduce concentration of COCs
- Understand the leaching potential of Polycyclic Aromatic Hydrocarbons (PAHs) following thermal treatments.

NAPL characteristics

- o resists flow at ambient conditions
- o temperatures at or greater than 90 °C necessary to enhance extraction
- o density is less than water

- Steam Enhanced Extraction: 2 pore volume (PV) and 6PV
- Hot water flushing: 15PV and 30PV

- Did not effectively remove NAPL or PAHs from soil
- Longer duration did not improve PAH or NAPL removal

- Limited PAH and NAPL removal
- Removal improved with longer duration

System Design

Steam injection

- Target area: soils greater than 10,000 mg/kg TPH
- Estimated 8,860 gallons of NAPL present Site wide
- Anticipate 50% recovery
- Steam injected outside, below and above target treatment zone
- Heat treatment zone to between 120 210 °F

Recovery well captures mobilized NAPL

o Positive displacement pump, extraction piping will be heated

- »Utilizes approximately 2 gallons water per minute
- »Creates 1,000 pounds steam per hour
- »Injected at around 15 psi through six steam injection wells

System Design

Soil Vapor Extraction

- Operate in conjunction with steam injection and biosparging
- Capture contaminantsvolatilized

Biosparging

- Promote biodegradation of remaining contamination
- Target the area of 1,000 mg/kg TPH

N. VIFA'S

System Design

System Design

- Steam injection and NAPL recovery
 - Discontinue when recovery becomes asymptotic (8 months)
 - Soil samples collected prior to and at conclusion of steam injection
- Biosparging
 - Soil samples collected to determine system effectiveness after 4 years
- SVE
 - Discontinue when biosparging ends
- Monitor soil vapor and groundwater

System Costs

Construction Cost – \$ 0.8 million

 includes construction of all remedial systems; wells trenching, piping, mechanical components

Non-Construction Cost – \$0.4 million

o design, permitting, program management

Operating Cost – \$0.7 million

 operation and maintenance (O&M) of steam injection/NAPL recovery for 8 months, O&M of biosparge and SVE systems for 4 years

Approximately \$245 per CY of soil

(Estimated 7,700 CY of impacted soil)

Summary

Thermal treatment technologies

- Enhance contaminant recovery
- Shorten cleanup times
- Eliminate the need for excavation
- Can be applied for a variety of organic contaminants and various site conditions

Contacts and Questions

Points of Contact

NAVFAC Mid Atlantic: Joe McCloud

joseph.mccloud@navy.mil

Questions?

Supplemental Information

Websites for additional information:

- https://clu-in.org/
- https://frtr.gov/costperformance/remediation/#19
- http://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM 200-1-21.pdf?ver=2014-05-08-155746-393